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A model of associating multipolar fluid is introduced. It is a one-component fluid with dipole-dipole
and anisotropic intracore sticky interaction. The Mayer function of associative sticky interaction con-
sists of the spherically symmetric part and the terms of dipolar and spin-spin symmetry. This model of
anisotropic penetrable dipolar hard spheres permits the formation of dimer and higher-order n-mer
species. Specific orientation-dependent correlations which result from the association of the monomers
influence the structural, dielectric, and thermodynamic properties. The model is analytically solved
within the mean spherical approximation. It is shown that the solution reduces to a linear combination
of the solutions for the model of overlapping hard spheres of Cummings and Stell. This mapping is simi-
lar to that obtained by Wertheim for the dipolar hard-sphere model [M. S. Wertheim, J. Chem. Phys.

55, 4291 (1971)].

PACS number(s): 61.20.—p

I. INTRODUCTION

The theory of associating fluids is of much interest to
those in chemistry and chemical engineering. Its applica-
tions include a description of phase equilibria, chemical
reactions, solvation, catalysis, and other areas. During
the past two decades the theory has been developed rap-
idly, using the method of integral equations [1-13]. The
most common approaches used to study associating fluids
are those of Stell and co-workers [4—10] and of Wertheim
[11-13]. The objective is to provide an adequate theoret-
ical treatment of the strong short-range attractive term of
the interparticle interaction that provides association.

The models of associating fluids can be classified ac-
cording to the symmetry and range of this interaction
[10]. Although the phenomenon of association in an ion-
ic fluid was first considered by Bjerrum [14], the model of
sticky interaction of Baxter [15] is perhaps the first at-
tempt to discuss association in a proper statistical
mechanic formulation.

However, a serious difficulty arises with the Baxter
model of an equal size isotropic sticky hard-sphere mod-
el, which was pointed out by Stell [16]. This model is
thermodynamically unstable, and every particle of the
system will bond to form a gel. The problem is that, nor-
mally, the statistical mechanics of fluids is based on ex-
pansions of interactions that will not exclude the interac-
tion of an unlimited number of particles in a given clus-
ter. The chemical bonds, however, will not allow more
than a few particles in a cluster. Typically, dimerization
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allows only one bond per atom. In other words, the
bonds saturate. Traditional statistical mechanics do not
include the saturation of bonds. An early discussion of
this problem was put forth by Chandler, Pratt, Hdye, and
Olaussen [1-3]. The proper formulation of the saturat-
ing forces requires a reformulation of the cluster expan-
sions and a new Ornstein-Zernike (OZ) equation, the
Wertheim OZ equation [11-13].

At the same time Cummings and Stell [4,5] developed a
simpler scheme, which is analytically tractable and which
is based on the fact that the sticky shell can be placed in-
side the hard sphere: in this case the hard core will limit
the number of participants in a given cluster. For exam-
ple, if the sticky shell is placed at a distance L <o /2,
where o is the hard-core diameter of the particles A4,
then not more than two monomers can be bonded at
once. As was shown by Stell and Zhou [6,7], the thermo-
dynamic perturbation theory of Wertheim [11-13] and
the simple interpolation scheme of these authors are
equivalent and very accurate, at least for small penetra-
tions.

Highly directional attractive forces are treated as the
interaction between the off-center sticky sites in the
Wertheim theory [11-13]. It is based on a novel fugacity
expansion to include explicitly the presence of bounded
particles. Analytic solutions of the off-center site models
are derived from the Wertheim OZ integral equation and
relevant closure relations. Both of the theories refer to
the correlation functions of bounded and unbounded par-
ticles in opposition to the standard OZ equation and clo-
sures.

Originally proposed for models with no electrostatic
interactions, both of the theories were extended for fluids
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with charged particles [17-22]. The association of ions
leads to the formation of extended dipoles or complexes
possessing dipole, quadrupole, and higher-order mul-
tipole moments in these fluids. The screening of
Coulomb interactions and the ordering of ions are strong-
ly affected by association.

There are clearly questions on when we want a formal-
ism of sticky points, which characterize highly direction-
al forces, like those of the sticky points of Wertheim, and
when can we get away with a simpler model like that of
the sticky shell of Stell e al. A case in point is water: if
we are going to build water from oxygen and hydrogen
atoms, like in the Stillinger-Lemberg model [23], then
quite clearly the interactions should be highly directional.
Surprisingly, though, it has been recently found [24] that
the structural and thermodynamic properties of a hydro-
gen bonded fluid can be explained by a (dipolar plus octu-
polar) potential that is not very directional.

It is therefore of interest to develop a theory that is, in
a certain sense, intermediate between the sticky point as-
sociation of Wertheim and the sticky inner-shell associa-
tion of Stell; namely, the inner shell with dipolar symme-
try. Then, only properly oriented spheres will associate.
Clearly a more sophisticated system (tetrahedral or octa-
hedral) can be addressed. Analytical models with aniso-
tropic surface adhesion were discussed in the past [25,26],
but only surface adhesion was treated. Anisotropic
dipole-dipole interactions with surface stickiness were
also used to account for directional forces in the compu-
tation of the dielectric constant € of a number of solvents.
Multipolar expansions in conjunction with Wertheim’s
thermodynamic perturbation theory were applied to
study chemical association for a number of fluids [27].

In this paper we introduce a class of models for associ-
ating multipolar fluids. The models are characterized by
interparticle electrostatic multipolar interaction and in-
tracore anisotropic sticky interaction. Therefore the par-
ticles can overlap and form dimers, trimers, and higher-
order n-mers made of overlapping monomers. The sim-
plest member of this family is the anisotropic penetrable
dipolar (APD) hard-sphere model. We also discuss
briefly the anisotropic penetrable quadrupolar (APQ)
hard-sphere fluid. The species resulting from the associa-
tion of monomers in the APD or APQ model will evi-
dently possess dipole, quadrupole, and higher-order mul-
tipole moments.

As was mentioned above, in charged associating fluids
the screening radius is essentially affected by the associa-
tion. In dipolar fluids the effect of the medium results in
a decay of correlations by a factor 1/e. Therefore it is of
interest to estimate the effect of the association on the

J

0, O<r <L—w/2,

dielectric constant for the APD model. The dependence
of the thermodynamic properties on the degree of associ-
ation is of relevance to the phase behavior of the system.

The model also lends itself to a number of other in-
teresting applications, such as ionic solvation, since
nonassociated dipolar hard-sphere (DHS’s) and associat-
ed (APD) solvents will have different effects on the poten-
tial of mean force. Moreover, the APD model can be
used to construct an ion-dipole model of ionic solutions,
where all species can be penetrable. The technical as-
pects of this problem will be discussed in a future work.

Our main objective here is to obtain the analytical
solution of the APD model. The model will be solved by
using the mean spherical approximation (MSA). We
show that the problem can be mapped onto that for a
chemically reacting simple fluid. The solution obtained
has the form of a linear combination of the solutions for
the model of overlapping hard spheres of Cummings and
Stell [4,5].

II. MODEL AND BASIC FORMALISM

Consider a one-component fluid consisting of “hard-
core” particles with intracore square wells and with em-
bedded pointlike dipoles in their centers. The depth of
the wells depends on the orientations of the dipole mo-
ments. The diameter of particles is denoted by o and
without loss of generality is assumed to be equal to 1.
The density of the fluid is p,. The potential energy of the
system can be written as follows:

Upot= 2 [Udd(ij)+Uassoc(ij)] ’ (1)

i<j
where i symbolizes both the position r; of the center of
mass of particle i and orientation of its dipole moment
Q,. The first term corresponds to the energy of the
dipole-dipole interactions and the second denotes the as-
sociative interaction energy. In what follows we shall use

the orientation-invariant expansions of Blum and Torru-
ella [28-30],

Fi)= 3 Ful)epha,,0, ), )

m,n, Ly, v

where ([)m”l(Qi’Qj"Qrij) are the rotational invariants.

For linear molecules the indices u,v=0 and we shall omit
them. Consider the Boltzmann factor that corre-
sponds to the pair interactions in the potential energy
given by Eq. (1), e(12)=14f(12)=exp{ —B[Uy(ij)
+ U,goc(ij) ]}, where f(12) is the Mayer function, and
let us introduce another Boltzmann factor 2(12), which
is defined as

Dy@*(Q,,Q,,Q, )+D@"AQ, Q)0 )+ D, @M 0,0, ), L—w/2<rp<L+w/2,

12

eU2) | xp(—Be*), L+w/2<ry<l,

exp[—BUdd(IZ)], L8P > 1,
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where 7, =|r;,|, w is the width of the attractive wells,
and D, (k=0,1,2) are their depths. The wells are cen-
tered at bonding distance L. The parameter £* denotes
the height of the square mound and is chosen sufficiently
large to assure exp(—pfe*)=~0. The parameters D, de-
scribe the energetic aspects of associative interactions,
whereas L and w give their geometry.

Let us analyze an assumption (3) in more detail. We
consider a model that contains an orientation-dependent
square well inside a hard core of particles. The transition
from e(12) to 2(12) in the form of Eq. (3) has been
thoroughly investigated by Blum and Torruella for arbi-
trary potentials (see [30] for a detailed description). It
reads

e(12)=exp 3 U™ ()@ (0,0, Q, )
m'n'l'
— 2 -émnl(r

mnl

)"0, 0,,Q, ) . )

12

Truncation of the series on the right-hand side of Eq.
(4) is certainly an approximation. Therefore, the form for
2(12) given by Eq. (3) can be considered as corresponding
to a certain approximate ‘“effective’” Hamiltonian, i.e.,
with the effective interparticle interactions. It is evident
then that each of the parameters D, (k =0, 1,2) depends
on the contributions from all of the types of anisotropy
contained in the initial Hamiltonian, and will also depend
]

— 14 —==8(r, — L)O%(Q,,0,,Q

)+
127

T2

f(‘r)(12)= +
127

— 1+ exp[ —BU4(12)], rip>1,

where 7°%, 7110 and 7!!2 are sticky parameters dependent

on the magnitude of the spherically symmetric and aniso-
tropic terms of attractive associative interaction and tem-
perature. Notice that the (112) term contains the deriva-
tive of the & function in opposition to the Mayer function
for the model with spherically symmetric associative in-
teraction. This is a feature of the sticky representation
that is necessary in order to obtain a simple sticky param-
eter equation at the level of irreducible representation of
the OZ equation [25,26].

To relate a set of parameters 7 to the energetic parame-
ters of interparticle effective interaction we apply the so-
called ‘“‘second virial coefficient device” proposed by
Baxter [15] and used already for the models of overlap-
ping hard spheres [3,4]. It implies that the second virial
coefficient for the model with initial interaction is equal
to the one that follows from the Mayer function given
within the sticky representation. Here we assume this
equality for the contributions from each of the anisotro-
pies, i.e.,

12710

on the geometric characteristics (L,w) of the initial asso-
ciative interaction.

With respect to the steric constraints the model
behaves similarly to its isotropic counterpart of Cum-
mings and Stell [4]. We shall restrict ourselves to the
case L +w/2=1/2, i.e.,, to a practically dimerization
case [4]. However, at given L and w the steric constraints
for our model are more restrictive due to the anisotropy
of the intracore square well. If one demands that
U,oc(12) for L —w/2<r;, <L +w/2 be attractive for
arbitrary orientations of the dipole moments, then D, has
to be sufficiently larger if compared with D, and D,.
Otherwise, the dimers will be formed only for specific
mutual orientations of dipoles.

The form of the Boltzmann factor given by Eq. (3) does
not permit one to obtain the analytic solution. Let us
now develop a limiting process to get an analytically
tractable problem. It is similar to that proposed by
Baxter [15] for the isotropic square well fluid. We take
the sticky limit (w—0; Dy,D,D,— o) in such a way
that

fdr?ooo

remain fixed, where 2™"(r) are the expansion coefficients
of 2(12) in the orientation-invariant expansion [28-30].
This implies that the sticky representation of the Mayer
function £ (12) becomes

(r), fdr?“o(r), and fdr‘e‘m(r) ,

S(rlz_L)Qllo(Ql,Qz,Q )

12

— 5 (r, —LI®'Q, 0,0, D, 0<rp<1 5)

L__mnl 2 g, — 1 mnl 2
foe (r)r2dr f0[1+f(,) (r))ridr , (6)

where (mnl)=(000),(110),(112), and f{!(r) are the
coefficients in the orientation-invariant expansion of the
Mayer function f,,(12) given by Eq. (5). It follows then
from Eq. (6) that

000 L?
[12L%*w +w3D, ’
10— L? 7
[12L%w +w?1D, ’
3L?

12

[12L%w +w3]D, ~

It could be seen from Eq. (7) that a specific form of the
(112) term in the Mayer function given by Eq. (5) leads to
another dependence of the parameter 7'!? on the parame-
ters of the associative interaction. In the limit D,, D,,
and D,— « the model reduces to a system of nonover-
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lapping hard spheres, whereas at D,,D,— o it reduces
to the one-component hard-sphere fluid with possible
overlap, i.e., to the model of Cummings and Stell [4].
Two other limits, i.e., Dy,D;— « and D,,D,— o« lead
to the models in which the dimers with the specific
configurations of dipole moments of monomers are able
to form.

The Mayer function f(12) represents a low density
limit of the pair correlation function A (12)=g(12)—1,
where g(12) is the pair distribution function. It is evi-
dent that the function A (12) will contain §-type discon-
tinuities in the same harmonic coefficients as f(12). In
order to obtain the closure relations for the correlation
functions we shall use the anisotropic truncated Percus-
Yevick (PY) approximation, i.e., we assume that the only
nonzero harmonics in 4(12) and c¢(12) are those con-
tained in f(12) and those that can be obtained from that
set by repeated convolution. Thus, the intracore closure
that follows from the form of f,,(12) is
LAY

12
L0

12

112
L,lzk

+ ——12—‘8'(rlz _L)q)llz(Ql,Qz,Q

h(12)=—1+ 8(ry, —L)®(Q,,Q,,Q, )

T12

+ 8(ri, —L)®"Q Q, Q, )

)

T2
for rip <1,  (8)

where A™" are the mean association parameters. The
" long-range dipole-dipole interaction is treated by using
the mean spherical approximation (MSA) for the direct
correlation function ¢ (12), which implies [31]

c(12)=—BUu(12) for rip>1. )

The closure given by Egs. (8) and (9) are the anisotrop-
ic truncated PY-MSA approximation for anisotropic
penetrable dipolar hard spheres. This approximation is
used to solve the OZ integral equation. As in the method
developed for chemically reacting simple fluids, we have
to relate the set of 7™ parameters to the set of Amnl
which are not independent of each other. Relevant equa-
tions will be obtained in the following sections.

III. SOLUTION OF THE ORNSTEIN-ZERNIKE
INTEGRAL EQUATION AND THE
DIFFERENTIAL-DIFFERENCE EQUATIONS

We need to solve the Ornstein-Zernike integral equa-
tion for the correlation functions. It has the following
form:

h(12)=c(12)+p, [d3h(13)c(32) . (10)

A detailed description of the Baxter-Wertheim factoriza-
tion technique to solve Eq. (10) for the models with
angular-dependent interparticle interaction has been
given in previous papers on the subject (see, for example,
[25,26]). The factored OZ integral equation reduces to a
pair of integral equations for the functions J¥"(r),

S¥"(r), which are defined as follows [25]:

n I
J;(""(r)=21rps(—1)X§ Y —x 0
© r
X [ “dtep |- |k (11)
and
ST (r)=2mp,(—1)X "ol
X (r)= Trps( ) ZI Y —Xx 0
xfr“’dnp, % ey, (12)

where h™"(r), ¢c™(r) are the projections of the corre-
sponding correlation functions and where the values for y
are restricted by the condition |x| <m,n, in accordance
with the properties of the 3j Wigner symbols. The fac-
tored OZ equation contains the unknown factor functions
qy"(r), which are related to the functions J ;(""(r) and
S7"(r) by convolution-type equations

J;(""(r)=q;;"(r)+§‘,foldu;""l(|r—t|)q;""(t>, (13)
my

and
1
Sprn=—qprn+ 3 [ drgy" (0g "= . (14
Lo
For the dipolar fluid under consideration the indices

m,n take the values 0,1. From the definition (11) and clo-
sure relation (8) it follows that, for r <1,

JX () =IX +mp,r*+vo(L —r) , (15)
where v=mp,L2\%% /6 and
JP =2mp, flwdt th®(t)—mp, . (16)

In a similar way, for m,n =1 and y =0, 1 we obtain
Jo (N =Jg" O +J§'Pr2+y0(L —r) , an

where vo=mp,LA! /6, Ad'=—A10/v3+2(A112/v30)
and

JNO = 275 %flwdt th 119(z)

__1 ® 112
s [ Tdrm | (18)

TN =p, =27TPST/—33;6 flwdt 2y

Finally,
JIN) =IO —p,r2 4y, 6L —71), (19)

where v, =mp, LA} /6, A1=—A10/v/3— 112 /v/30, and



576

J(l)l(())

= 1 re 110
2mp, 7 fl dt th ()

f dt th'%(¢) (20)

21/ 30

Consider Eq. (13) at » <1: substitute (15)—(20) and then
differentiate once the result by ». We then obtain three
differential-difference equations for the Baxter functions,

O (r)+v[gP(r +L)—qP(r —L)]+v8(r —L)

=MPr+M", @D
5" (N+volgg' (r +L)—gg' (r —L)]+ve8(r —L)
(O)r+‘u(l) (22)
g1V (N +vlgi'(r +L)—qi (r —L)]+v,8(r —L)
=pir +pi,  (23)
where
|
'u(O)
AoCOS(VOr)+B0s1n(vor)—v—0r+'u,(°) 1—
g4 (n=

Agsin[vy(r Mo
Vo

where the coefficients 4, B, and the moments p(f) are

AOZL( _VOT13 +2b2T33) )
Ao

BO=L( _VOT14 +2b2T34) N
AO

) (28)
“80)2 A_o( —‘VOT” +2b2T31 ) >

1
I-L((')”= 'K-(;( _’Vole +2b2T32) .

The determinant A, and all necessary cofactors T;
were calculated in [4] (see Appendix B of [4]); one only
has to replace the multiplier 61 by b,. For the conveni-
ence of the reader we present the cofactors in the Appen-

dix. At vy—0, Ag—(1—b,/6)*=p2 for L =1 as well as

for L =1. The solution of Eq. (23) is similar to (27); we
just have to make the following substitutions:
Ao,Bo— A1,By; T;—Th, Ag—Ay, pg’—pld, vo—v,

For x=1, 1—»(1+b /12)2— 2. The parameters S
and B, are the key ingredients of the MSA solution for
dipolar hard spheres [31], and now we have their
equivalents for the APD model. The general case of
different L can be handled similarly. In Ref. [9] a general
form for + <L <1 and 1 <L <1 can be found.

We would like to note that the closure given by Eq. (8)
with the derivative of the 8 function replaced by the &
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Vo

—3)]—Bjcos[vy(r —1 )]+~—r+,u
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M =2mp (1—KF?), M =2mp KPV | (24)
1 =2b,(1—K§), ui=2b,K 5!V, (25)
Kmn(l)_f dt tl mn(t) . (26)

The moments u{” are similar to (25), but with —b, /2
instead of b,, and they contain the corresponding mo-
ments K !V of the factor functions ¢1'(r). It is evident
from Eqgs. (21)-(23) that our problem has been mapped
onto the one-component chemically reacting fluid of the
penetrable hard spheres of Cummings and Stell [4,5].
The difference is that here we deal with a set of sticky pa-
rameters v, vy, v, and have to replace 7p in the solution of
Cummings and Stell [4] by b, or —b,/2 to obtain the
solution for (m,n)=1. Equation (21)-(23) are easy to
solve; we can just use the solution for different L from
[4,5,9]. Let us consider the simplest case with L = and

pay the most attention to the solution of Eq. (22). Mak-
ing modifications needed for our model we have
- B—O* for 0<r<i
Yo
(27)
1— + ﬂ'ﬁ_ for 1<r<1,
Yo

function does not provide mapping onto the PY solution
for overlapping hard spheres. It leads to an integro-
differential equation, since the right-hand sides of Egs.
(21)-(23) contain additional integrals of ¢}"(r) and mo-
ments K '""('). It is therefore impossible to solve analyti-
cally the general dipolar and higher-order anisotropy
problem with this closure.

According to the MSA closure given by Eq. (9), the
direct correlation function outside the hard core is given
as

‘/ (0)?
c112(r)=—,3U‘}‘}2( )= B 30 Qr3 , r>1,
(29)
c™(r)=0, r>1, {mnl}#{112} ,

since we assumed no long-range interactions other than
dipole-dipole (Q!? is the dipole moment). It follows then
from the definition (12) and boundary condition (29) that

S¥"(r)=0 for r>1. (30)

The direct correlation function ¢™(r), as well as
h™"(r), are obtained by the inverse transformation of
Egs. (11) and (12) [25,26],
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27p; £y inf%m (1) m )
—_— ry=-— —_
2[ +1 x=—inf(m,n) X _X 0

where (f,F)=(h,J) or (c,S). Substituting Eq. (29) for
¢!'%(r) and (30) in (31), we obtain

$mp, B\ = [ar si— [lar s . (32)

Now, it is necessary to determine the moments of
S¥"(r) in terms of the corresponding Baxter functions.
At first glance it looks cumbersome, because one has to
substitute (27) in (14) and then calculate the moments of
Sy". However, it was shown in [26] [see Egs. (61)-(64)]
that there exists a simple relation between the moments
of S7" and the moments of K ’;’"“’. Using the result given
by Eq. (64) of [26], rewrite Eq. (32) in the form
2 2

(0) (0)
Ho Hy
=== > 33
Y™ 128, b, (33)
where y =$7p;BQ (10)2 and p”,u\®) are determined by Eq.

(25). This equation has a form similar to its equivalent
for DHS [31], as well as for the case of anisotropic sur-
face adhesion [see Eq. (82) of [26] and its corrected form
in the notes of [24]]. The dielectric constant of the APD
model is, in the MSA,

2

2
_ #E)O) _ All’ —voT +2b,Ty, (34)
4!‘(10)2 4A<2) —wiTH —b,T5 ’
where for L =1,
2b b
Th=——2|1—== |[(1—s —¢)
Yo 2v,
4b3
— = [4—vot+(vo—4)c —ves] ,
vV,
° (35)
Ty = 1= 22 |14+ 222 (145 —0)
31 2vg s 2 s—c

2b,
+—="[2vy—2+(2—vy)c —2s],
Yo
and where s =sin(vy/2), ¢ = cos(vy/2). The cofactors
T1, and T3 are also given by (35); one has to make the
substitutions b, — —b, /2 and vy—v,.

Equations (33) and (34) are our main results. In a fu-
ture work we will investigate numerically the dependence
of the dielectric constant on the density p,, dipole mo-
ment Q(IO), and association parameters Amn

IV. STICKY AND ASSOCIATION PARAMETERS

To derive the necessary equations that relate the sticky
77 and the mean association parameters A", we use the
definition of the cavity function y (12),

*® mn 1 ’ ’ 1 "
INC D20 [78(r—t)—P,(l)78(r—t)+P,

’

r|1
p ] 5 O(r —1t)

(31)

g12)=[1+f,(12)]p(12) . (36)

We are working within a truncated PY-MSA closure
[25,26], so that only a restricted set of angular invariants
are included. Expanding (36) in rotational invariants, we
obtain

000,000 — ., 000, 110 7%
A0 y o U(L)+y (L)

7_11()
+y ML)+ Ly (L)) ‘/goj?n , 6D
A110T000=y110(L)+y000(L):i_.(1)2 , (38)
k“27-°°°=y“2(L)+[y°°°(L)+Ly“2'(L)]:—.(1): ,  (39)

where y™*'(r) is the derivative of the cavity function. To
derive Egs. (37)-(39) we used Egs. (5) and (8) and the
multiplicative properties of rotational invariants [28-30].
It is necessary to note also that Egs. (37)—(39) result
from the integration of (36) with respect to r from L ™ to
L*. The main approximation in (37)—(39) is the trunca-
tion of the set of rotational invariants that arises. What
kind of approximation for y ™"(r) inside a hard core does
one have to utilize? This issue has to be studied in more
detail. For spherically symmetric intracore stickiness,
Stell and Zhou [6,7] and later Rasaiah and Zhu [32] stud-
ied approximations that satisfy the mass action law. For
the model under study the equilibrium association con-
stant

A
1 23 (40)
[4]
is determined within the MSA by the parameter A%®

only, due to the orthogonality of rotational invariants.
So one can, in principle, use the schemes proposed in
[6,7] for our model. However, the peculiarity of the
APD model is that three parameters ™ are determined
as a solution of the system of equations (37)-(39). More
precisely, we have to solve the system of equations
(37)-(39) together with Eq. (33), which contains three un-
known A™" and b,, which depend on the dipole moment.
It is clear then, that this issue is quite delicate and will be
investigated in more detail in a future work.

V. COMMENTS ON THE SOLUTION
FOR QUADRUPOLAR-TYPE INTRACORE STICKINESS

Quadrupolar-type surface adhesion has been utilized in
[25] to generate specific angular correlations between the
particles. We would like to demonstrate here that the
procedure presented in the previous sections for the APD
model can be transferred to the case of quadrupolar-type
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intracore stickiness or higher-order anisotropy. It can
also be combined with dipolar or quadrupolar electrostat-
ic interactions, in a manner similar to the ion-dipole-
quadrupole model of electrolyte solutions [33]. To deal
with the problem, assume that the Mayer function in the
sticky (7) representation has the form

A (r)=—1+ 12fsz(r—L), r<l (41)
3

£ (0= 1;:224 8" (r—L), r<1 “2)

Fi, (r)=0, r <1, {mnl}#{000,224} . (43)

It follows then, that the appropriate closure for the pair
correlation function is

000

h%<r)=—1+7‘12La<r—L),r<1 (44)
220

B220(p) = klzL 8(r—L), r<1 45)
222

hzzz(r)=L1;-'£8’(r —L), r<l (46)
224 3

h224(r)=2‘—1—21—"—5"'(r —L), r<l 47

hl())=0, r<1, {mnl}#{000,220,222,224} .  (48)

Using the closures (44)—(48) in Eq. (11) we can write the
function J"(r) for » <1 in the form of a polynomial and
a sticky term as follows:

JA(r)=a,+Bri+y, r*+5 0L —r), r<l, (49)

which leads to the following differential-difference equa-
tion:

4, (P+Epslay(r +L)—q,(r —L)]+£,8(r —L)
=4y (1-K)r’+12y, K \Vr?
+[28,(1-K )12y K P Ir +2B, K +K .
(50)

The complication in the solution of the quadrupolar
problem is the presence of higher-order moments (K ;2)
and K ;3 )). The function g x(7) will possess an intramolec-
ular part and a polynomial of the fourth order in r.
Then, the matrix necessary to find the coefficients of
q,(r) and the moments will be of the size 8 X8 in compar-
ison with 4X4 for the dipolar problem. Finally, the set
of equations relating A™" and 7™ will contain the third
derivative of the cavity function. This brief formal
description is, we believe, sufficient to solve the problem
for quadrupolar type intracore stickiness.

VI. CONCLUSIONS

We have presented an analytically solvable model of
anisotropic penetrable dipolar hard spheres. The solu-
tion is given in terms of the corresponding problem for
the overlapping hard spheres. It is shown that for the

models with an anisotropic shielded sticky shell, the in-
tracore closure for the pair correlation function must be
of a special form containing the derivatives of the 8 func-
tion. We have demonstrated the solution for the algebra-
ically simplest case, i.e., L =4. Some other cases can be
treated analytically, but for arbitrary L it is more con-
venient to solve the problem numerically. Implementa-
tion of the closures other than PY-MSA requires a nu-
merical solution, too.

Along with the properties of the APD model that
deserve to be studied in detail, it is necessary to list the
dielectric, thermodynamic, and dynamic properties. Pos-
sible extensions of the model are of interest. In particu-
lar, the ionic solvation with the APD model used as a sol-
vent, and adsorption of associating polar fluid on sur-
faces, are the phenomena in which the association of po-
lar species can lead to interesting effects. These issues
will become a subject of our future studies.
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APPENDIX

For the case L = the cofactors T}; are

2b2 Yo
=—"Z 1—vp— [1= e+
12 V% Yo B c S]
2 v
— =2 |1+ v— [1+—° c—3s
Yo
T PO P
v 5 5 |5
b2
2
+—5-[4—vo+(vg—4)c —sv] , (A1)
Yo
2
b, b, b,
Ty=— [1-=—> | e—— [1— =% [(1+c—
13 2vg c v(z,[ 2o (14+c—s)
b,
+—5[—voe +(4—2v()s]
Vo
b% Vo
t— |72+ |2+ [ctvs
Vo 2
4b% Yo
+—2 1= 1+ = [e +H(1=wps | , (A2)
v 2
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T PPe T I B PR T 1P )
147 2 | T 2w €
+—§—[4—v0-—(4—2v0)c—svo]
Vo
b3
-—4[—v0+2voc—(4+v0)s]
21’0
4b% Vo v
_Vg— 1——2"—(1—1/0)6— 1+—2" s, (A3)
2b,
T32=__"_2“‘(1_C) y (A4)
Yo

==L (14— =1 1= 22 |(145—20)
3 V% 2V0 Z'VO
b,
——5(1+s—4c)
Yo
4b3 o
— |1+ =vp)s — |1+ |c|, (A5)
vy 2

c 1 b, b,
Ty=—+5— [1—5— |(2s+c)+ (45 +c)
Vo 2V0 2V0 2V0
4b2 Yo
— |1=vp—(1—=vy)e 1+7 s (A6)
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These expressions can be used to obtain the explicit ex-
pression for the dielectric constant.
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